Meet the Team

We are a group of theoretical physicists striving to better understand the fundamental laws of nature
I work on the calculation of multi-loop Feynman integrals and scattering amplitudes. I am also interested in integrability in quantum field theory, correlations functions in the maximally supersymmetric Yang-Mills theory, and applications of the conformal symmetry.
Chicherin
Dr. Dmitrii
Chicherin
Max Planck Institute for Physics
Germany
My current research focuses on Wilson loops and the computation of Feynman integrals. Our work on scattering amplitudes brings together researchers from multiple disciplines and backgrounds. Our combined efforts aim to provide a better understanding of the forces that are essential to our world. This is what motivates me to contribute to this fascinating field.
Dlapa
Christoph
Dlapa
Max Planck Institute for Physics
Germany
My research area is at the interface of elementary particle physics and quantum field theory. What fascinates me especially is that ideas coming from different scientific communities, such as collider physics, string theory, conformal field theory, and mathematics help to bring about advances. As the principal investigator of the ERC-funded project 'Novel structures in scattering amplitudes', I am excited both to help guide young scientists to interesting research questions, and at the same time to learn from their fresh perspectives.
Henn
Prof. Dr. Johannes
Henn
Research Team Lead
Max Planck Institute for Physics, Germany
I am working on my master thesis project in the field of scattering amplitudes. In particular, I am studying the implications of conformal symmetry for scattering amplitudes beyond the tree level.
Power
Bláithín
Power
Max Planck Institute for Physics
Germany
My field is science communication. I support the team members in making their research public. Together we find new ways of communicating theoretical particle physics to a broader audience.
Scholtes
Sorana
Scholtes
Max Planck Institute for Physics
Germany
In my research, I follow the path from the first principles of quantum field theory to the realistic description of particle scattering in collider experiments. I employ a combination of mathematical insights and analytical and numerical methods to obtain precise theoretical predictions for the phenomenology of particle collisions at high energies. This phenomenology encodes the key information for unraveling the most fundamental laws of the universe.
Sotnikov
Dr. Vasily
Sotnikov
Max Planck Institute for Physics
Germany
My main research interests are focused on the physical and mathematical aspects of scattering amplitudes in gauge theories, in particular, towards the development of modern techniques for the calculation of scattering amplitudes. I look forward to understanding the physics that emerges from colliders, like LHC at CERN. I am especially interested in having a pure four-dimensional framework to compute relevant observables useful for the latter. Moreover, I am interested in applying these modern techniques developed primarily for gauge theories to effective field theory approach to general relativity. Currently, I am considering fifth post-Newtonian corrections to the Newton potential to higher orders.
Torres Bobadilla
Dr. William J.
Torres Bobadilla
Max Planck Institute for Physics
Germany
In my research I focus on studying the connection between scattering amplitudes and Wilson loops in conformal field theories and use integrability techniques and ideas to compute these quantities outside of the perturbation regime. These ideas might one day be extended to non-conformal theories like quantum chromodynamics (QCD), which would give us the ability to compute physical quantities in regimes that are inaccessible to conventional quantum field theory techniques and help us gain a deeper understanding of the fascinating connection between gauge theories and string theory.
Tumanov
Dr. Alexander
Tumanov
Max Planck Institute for Physics
Germany
As a high-energy physicist, there are three major research questions that I find intriguing: What are the best observables to measure in order to probe the underlying quantum theory? Can the observables be computed reliably in perturbation theory? What are the most efficient ways to compute them? To address these questions, I work on problems that fall into a few different categories: event shapes, in particular, energy-energy correlators, soft/collinear factorization and violation of scattering amplitudes, as well as novel tools for computation of Feynman loop integrals by the method of differential equations.
Yan
Dr. Kai
Yan
Max Planck Institute for Physics
Germany

Main collaboration partners

Prof. Dr. Emery

Sokatchev

LAPTh
Université Savoie Mont Blanc, France

Dr. Gregory

Korchemsky

Institut de Physique Théorique
CEA, France

Dr. Bernhard

Mistlberger

Department of Physics
MIT, USA

Dr. Simon

Badger

Department of Physics
University of Turin, Italy

Prof. Dr. Thomas

Gehrmann

Particle Physics Theory
University of Zurich, Switzerland

Prof. Dr. Gudrun

Heinrich

Institute for Theoretical Physics
Karlsruhe Institute of Technology, Germany

Dr. Tiziano

Peraro

Particle Physics Theory
University of Zurich, Switzerland

Prof. Dr. Yang

Zhang

Department of Modern Physics
University of Science and Technology of China, Hefei, China

Photography by Prof. Dr. Yang Zhang (University of Science and Technology of China)
and A. Griesch (Max Planck Institute for Physics)

Animations by Dave Whyte (@BeesAndBombs)

Site design by Josh Worth